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Abstract—Mild Cognitive Impairment (MCI) is a preclinical stage of Alzheimer’s Disease (AD) and is clinical heterogeneity. The 

classification of MCI is crucial for the early diagnosis and treatment of AD. In this study, we investigated the potential of using 

both labeled and unlabeled samples from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to classify MCI through 

the multimodal co-training method. We utilized both structural magnetic resonance imaging (sMRI) data and genotype data of 

364 MCI samples including 228 labeled and 136 unlabeled MCI samples from the ADNI-1 cohort. First, the selected quantitative 

trait (QT) features from sMRI data and SNP features from genotype data were used to build two initial classifiers on 228 labeled 

MCI samples. Then, the co-training method was implemented to obtain new labeled samples from 136 unlabeled MCI samples. 

Finally, the random forest algorithm was used to obtain a combined classifier to classify MCI patients in the independent ADNI-

2 dataset. The experimental results showed that our proposed framework obtains an accuracy of 85.50% and an AUC of 0.825 for 

MCI classification, respectively, which showed that the combined utilization of sMRI and SNP data through the co-training 

method could significantly improve the performances of MCI classification. 

Index Terms—Mild Cognitive Impairment, Classification, Co-training, sMRI, SNP  

 

——————————   ◆   —————————— 

1 INTRODUCTION

 lzheimer’s Disease (AD) is a progressive and irre-
versible complex neurodegenerative disease with 

responsible for about half a million deaths worldwide 
per year [1]. Mild Cognitive Impairment (MCI) is con-
sidered as a preclinical stage of AD. MCI has clinical 
heterogeneity [2]. Some MCI patients will stay stable 
(stable MCI, sMCI) after 10-years’ follow-up or even re-
turn to normal cognitive status by timely interventions 
[3], [4]. Other patients will progress to AD (progressive 
MCI, pMCI) after a period of time [5] and will die after 
more than three years [6]. Therefore, the classification of 
MCI is necessary and urgent for identification and ef-
fective therapeutic interventions of early AD. 

For AD and normal control (NC) classification, 
good performances have been reported in many studies. 
Sun et al. [7] presented an accuracy of 92.8% on AD/NC 
classification using gray matter density, Zhu et al. [8] 
acquired a 90.3% accuracy using gray matter volume. 
Compared to AD/NC classifications, the performances 
of sMCI/pMCI classification are much lower. Davat-

zikos et al. [9] reported an accuracy of 56% in the classi-
fication of MCI samples using structural magnetic reso-
nance imaging (sMRI) data from the Alzheimer's Dis-
ease Neuroimaging Initiative (ADNI) cohort, while the 
sensitivity was quite high (95%) and specificity was 
quite low (38%). Sun et al. [7] reported an accuracy of 
64% using gray matter density map, Salvatore et al. [10] 
reported an accuracy of 62% using single sMRI feature, 
Zhu et al. [11] obtained an accuracy 71.3% using gray 
matter volumes. 

Structural imaging findings are classification 
markers for neurodegenerative disease. Quantitative 
trait (QT) markers based on sMRI are sensitive to reflect 
the first morphological changes in the AD brain [12] and 
have been proved to be associated with MCI progres-
sion [13]. Compared with the computed tomography 
(CT) and positron emission tomography (PET), sMRI 
has the advantages of high-quality spatial resolution, 
sufficient contrast, completely non-invasive and lower 
cost. Medial temporal lobe atrophy extracted from sMRI 
can be used as an imaging biomarker of AD, and the ac-
curacy of distinguishing AD patients from normal peo-
ple is up to 89% [14]. MCI is image heterogeneity. 
Fleisher et al. [15] found that the brain atrophy pattern 
of MCI patients is consistent with that of AD patients, 
that is, the structural changes in the medial temporal 
lobe make MCI patients more likely to progress to AD, 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

A 

———————————————— 

• S.X. Yuan, H.T. Li, and X. Sun are with State Key Laboratory of Bioelec-
tronics, School of Biological Science and Medical Engineering, Southeast 
University, Nanjing, 210096, P.R. China. E-mail: 230159460, leehightall, 
xsun@seu.edu.cn. 

• J.S. Wu is with the Department of Geographic and Biologic Information, 
Nanjing University of Posts and Telecommunications, Nanjing 
210003,China (e-mail: jansen@njupt.edu.cn). 

mailto:230159460,%20leehightall,%20xsun@seu.edu.cn
mailto:230159460,%20leehightall,%20xsun@seu.edu.cn
mailto:jansen@njupt.edu.cn


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2021.3053061, IEEE/ACM Transactions on Computational Biology and Bioinformatics

2 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 

 

while Karas et al. [16] found that MCI patients with at-
rophy of the left temporal lobe parietal lobe and other 
structures are more likely to progress to AD. Chupin et 
al. [17] found that hippocampal volume was a potential 
imaging marker for predicting whether a MCI patient 
will convert to AD after 18 months. Querbes et al. [18] 
found that cortical thickness could predict MCI progres-
sion after 24 months.  

Genetic factors play important roles in the patho-
genesis of MCI and AD. Genetic factors contribute up to 
79% to the incidence of AD [19] and APOE ε4 is the most 
significant risk factor of AD. MCI is a genetically com-
plex disease and there is no major risk genetic factor 
known to be related to MCI [20]. Some studies have 
shown that APOE ε4 is correlated with the high risk of 
MCI [21], while the correlation was not confirmed in 
other studies [22][23]. Meanwhile, the roles of some 
well-known AD-related loci in MCI are not clear. Single 
nucleotide polymorphism (SNP) can be used as features 
for classification. Ning et al. reported the ability of AD 
risk loci in AD/NC classification [24]. Rodríguez et al. 
[25] selected 8 known AD-related loci and found there 
was no good discrimination for the classification of MCI.  

Multimodal data could reflect the biological mech-
anism of AD and MCI from different views, and also 
could provide complementary information in classifica-
tions which is robust to noise and data heterogeneity 
[26]. Several studies combined multimodal data to im-
prove classification performance. Liu et al. [27] com-
bined MRI and PET data through convolutional neural 
networks in AD/NC classification and the accuracy of 
multimodality (93.26%) was higher than single modal-
ity (84.97% of MRI and 88.08% of PET). Supervised 
learning and unsupervised learning are the two major 
directions of traditional machine learning [28]. Super-
vised learning requires all samples are labeled, while 
unsupervised learning does not. However, the collec-
tion of labeled samples is expensive and time-consum-
ing in practice. Semi-supervised learning (SSL) com-
bines labeled and unlabeled samples to improve the 
generalization ability and performances of classifiers. 
Unlabeled samples could be used to estimate the intrin-
sic geometric structure of the actual data [29] and also 
can provide feature information during the construc-
tion of the classification models. Wu et al. [30] used SSL 
in diabetes disease diagnostic study, and prediction ac-
curacy was 82.29% compared to the supervised learning 
classifier with an accuracy of 79.17%. An et al. [31] re-
garded MCI as unlabeled samples in AD/NC predic-
tion and obtained a 1-2% improvement in accuracy 
compared with the state-of-the-art method. Co-training 
is a representative algorithm of SSL, which trains two 
separately classifiers on two sufficient and redundant 
views [32], that is, each view is sufficient to learn a clas-
sifier and these two views are mutually independent. 
Sun et al. [33] used labeled and unlabeled data in breast 

cancer diagnosis through co-training, and the AUC was 
7.4% higher than using labeled data only.   

To our knowledge, no study has actually consid-
ered both labeled and unlabeled samples to classify 
MCI from multimodal views. In this study, we investi-
gated the possibility of using both labeled and unla-
beled MCI samples in the ADNI cohort through co-
training to help to classify MCI samples with multi-
modal data including baseline sMRI and SNP data. First, 
we built two separated initial classifiers using selected 
QT and SNP features on original labeled MCI samples 
derived from the ADNI-1 cohort. Then, unlabeled MCI 
samples from the ADNI-1 cohort were used in the co-
training processes. Finally, random forest (RF) was used 
to obtain a combined classifier. MCI samples from the 
ADNI-2 dataset were applied to evaluate the effective-
ness of the methods. The workflow of our research is 
illustrated in Figure 1. 

 
Fig. 1. The workflow of our proposed methods. (A) Feature 
selection. QT and SNP features are selected from sMRI and 
genotype data, respectively. SVM is utilized to build initial 
QT and SNP classifiers using the selected features. (B) Co-
training. Unlabeled MCI samples are used in the co-train-
ing processes. Two classifiers classify the unlabeled MCI 
samples and the accordant pseudo labeled sMCI and pMCI 
samples are added to the labeled MCI samples. (C) Fusion 
Model. The random forest algorithm is used to obtain a 
combined classifier. ADNI-2 cohort is used as an inde-
pendent dataset to evaluate the performance of our predic-
tive model. 

2 MATERIALS AND METHODS 

2.1 Data Description 

Data used in the preparation of this article were 
obtained from the ADNI database (adni.loni.usc.edu). 
As such, the investigators within the ADNI contributed 
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to the design and implementation of ADNI and/or pro-
vided data but did not participate in analysis or writing 
of this report. The ADNI was launched in 2003 as a pub-
lic-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial MRI, PET, other biological 
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of 
MCI and early AD. 

2.2 Samples 

We used ADNI sample data collected from 50 
clinic sites. A total of 819 individuals were recruited by 
the ADNI-1 cohort, and 757 of them were run on the 
Human610-Quad BeadChip for genotype data and un-
derwent high-resolution T1-weighted Magnetization 
Prepared Rapid Gradient Echo (MP-RAGE) structural 
MRI at baseline. Among these 757 individuals, 364 indi-
viduals were categorized as MCI samples at baseline ac-
cording to the records from ADNI database. In the 
ADNI-2 cohort, 290 individuals were run on the Illu-
mina HumanOmniExpress BeadChip for genotype data 
and underwent high resolution T1-weighted MP-RAGE 
structural MRI at baseline, of which 146 individuals 
were categorized as MCI samples at baseline according 
to the records from ADNI database. In this study, those 
MCI samples progressed to AD after 36-months’ were 
identified as pMCI and those MCI samples remained 
MCI during the 36 months’ observation time were iden-
tified as sMCI. sMCI and pMCI samples were consid-
ered as labeled MCI samples. Meanwhile, other MCI 
samples were identified as unlabeled MCI (uMCI) due 
to lack of 36-month` follow-up diagnostic information 
or diagnoses fluctuate. Diagnose fluctuate can be de-
fined as a sample may wobbly among cognitive status 
[34] or diagnosis fluctuation between different trajecto-
ries of MCI (e.g., progressing from MCI to dementia, but 
back to MCI) within a certain follow-up time period [35]. 

The following data of all samples were obtained: 
T1-weighted MRI, the Illumina SNP genotyping data, 
and clinical information of patients including gender, 
age, years of education, the Mini-Mental State Examina-
tion (MMSE) score, and the Clinical Dementia Rating 
Sum of Boxes (CDR-SB) score. The MMSE [36] is a quick 
and easy measurement for cognitive dysfunction with 
scores that range from 0 to 30, and the CDR-SB [37] is a 
clinician-rated staging method that ranges from 0 to 3. 
Subjects with lower MMSE scores or higher CDR-SB 
scores indicate greater cognitive dysfunctions. Stu-
dent`s t-test was used to assess the statistical significant 
differences of age, education year, MMSE score, and 
CDRSB score between the sMCI and the pMCI groups 
in ANDI-1 cohort. 

2.3 Image and genotype data pre-processing 

A total of 103 QT, including 35 subcortical structure 

volumes and 68 cortical structure thicknesses were 
measured from T1-MRI images using Freesurfer (Ver-
sion 6.0.0) [38] for all selected samples.  

QT adjustments were performed due to individual 
brain differences [39]. A linear regression model [40] 
was used for raw QT adjustments by global measure-
ment (GM), intracranial volume for subcortical struc-
tures, and cortical mean thickness for cortical structures, 
as described below (1). The adjusted QT of the ith struc-
ture (ROIi 

adjusted) of a sample was defined as, 

( )i i

adjusted raw i raw meanROI ROI GM GM= − −                  (1) 

ROIi 
adjusted represents the raw quantitative trait of the 

ith structure of the sample, GMraw represents the global 
measurement of the sample and GMmean represents the 
mean GM across all samples. εi is the slope of the regres-
sion line between ROIi 

raw and GMraw across all MCI sam-
ples. Subcortical volume and cortical thickness were 
widely ranged and with different dimensions, so the 
standardization of origin data is needed. The Z-score 
method was used for data standardization. 

The original genotype data of the ADNI-1 cohort 
contained 620,901 markers on the Illumina Human610-
Quad BeadChip. First, all CNV markers (21,890) and 
SNP markers in non-autosomal chromosomes (16,475) 
were excluded. Then, quality control procedures were 
performed using PLINK software (Version 1.70) [41]. 
SNPs with a call rate of less than 90%, or deviations 
from the Hardy-Weinberg Equilibrium [42] (5 × 10-7), 
or Minor Allele Frequency (MAF) less than 10% were 
excluded from the genotype dataset. 456,028 SNPs re-
mained after quality control. Finally, a binary-traits 
GWAS was conducted using sMCI and pMCI samples 
as negative and positive samples, respectively. Geno-
type clumping was conducted using PLINK software. 
We used the following clumping settings in PLINK: --
clump-p1 5×10-4 --clump-p2 5×10-4 --clump-r2 0.5 --
clump-kb 500 for genotype clumping. After clumping, 
125 SNP loci significantly associated with MCI progress 
were kept and transcoded to 374 SNP features with the 
one-hot encoding [43] process (Figure 2). The Manhat-
tan plot of MCI progress-associated SNPs and the list of 
125 significant SNP loci are supplemented in Figure S1 
(Appendix A) and Table S1 (Appendix B), respectively. 

 
Fig. 2. SNP locus is transcoded to SNP features using one-
hot encoding. Assuming A is the major allele and a is the 
minor allele of a SNP, there are three allele types of the SNP, 
AA, Aa, and aa. These categorical variables AA, Aa or aa 
were transcoding to discrete variables [1,0,0], [0,1,0] or 
[0,0,1]. 
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2.4 Feature selections and classification of MCI 

Feature selection is an important process that can 
remove irrelevant, redundant, and noisy features, and 
directly improve classification performances. Least Ab-
solute Shrinkage and Selection Operator (Lasso) is a 
popular algorithm for feature selection which penalizes 
a linear regression model with l1-norm [44]. In this study, 
we used the R packaged names glmnet (version 2.0-18) 
to perform the Lasso method for feature selections. In 
each round of QT and SNP feature selections, we ran 
Lasso 100 times and features were ranked by frequency, 
and features with the same frequency were re-ranked 
use learning Vector Quantization (LVQ) approach [45]. 
The selected features of each modal data were based on 
the feature ranking results. (Figure 1A). The initial QT 
and SNP classifiers were built on the ADNI-1 labeled 
MCI samples by SVM method using the selected QT 
and SNP features. 

Co-training [32] is a semi-supervised machine 
learning method, with which multimodal features and 
unlabeled samples are used to improve the classifica-
tion performances. Let L and U represent the labeled 
and unlabeled MCI datasets, respectively. fQT and fSNP 
represent the classifiers that were built on L using se-
lected QT and SNP features, respectively. A subset (u) 
of unlabeled MCI samples were selected from U ran-
domly and classified by fQT and fSNP, respectively. Unla-
beled MCI samples classified by QT and SNP classifiers 
were considered as pseudo labeled MCI samples. sQT 
and pQT denote the pseudo labeled sMCI and pMCI 
samples which were classified by fQT respectively, while 
sSNP and pSNP denote the pseudo labeled samples which 

were classified by fSNP respectively (sQT∪pQT = sSNP∪

pSNP = u). The accordant pseudo sMCI samples (sQT∩

sSNP) and pseudo pMCI samples (pQT∩pSNP) were added 
to L and the discordant pseudo samples were released 
back to U. Such processes were iterated until the labels 
of selected pseudo samples were totally different pre-
dicted by the QT classifier and the SNP classifier. As 
comparisons, we built five different models for the im-
pacts of the different unlabeled sample chosen sizes u 
(10, 15, 20, 25, and 30) on model performances. The ac-
cordant sample sizes and the performances of the com-
bined classifiers of each model are provided in Appen-
dix D. Finally, we got new labeled MCI samples com-
posed of L and accordant pseudo labeled MCI samples 
(Figure 1B).  

Subsequently, the random forest algorithm was 
used to obtain a combined classifier on the new labeled 
MCI samples (Figure 1C). RF is a popular algorithm de-
veloped by Breiman that uses an ensemble of decision 
tree classifiers [46]. In our study, the selected QT and 
SNP features were combined, and the RF algorithm was 
used to obtain a combined classifier on the new labeled 
MCI dataset after the iterations were terminated. 83 

MCI samples from the ADNI-2 were applied to evaluate 
the effectiveness of the combined classifier. 

2.5 Methods of SNP annotations 

To identify the biological significance of the selected 
SNP loci and corresponding genes, we pursued the fol-
lowing strategies: (1) Ensemble VEP database was used 
to evaluate the potential effects of SNPs on genes, tran-
scripts, protein sequences and regulatory regions in 
coding and non-coding regions [47]. (2) HaploReg data-
base was used to explore the regulatory potential and 
the eQTL information of SNPs [48]. (3) The Braineac 
eQTL database was used to analyze the differences in 
transcriptomic expressions in ten brain regions (cerebel-
lar cortex, frontal cortex, hippocampus, medulla, occip-
ital cortex, putamen, substantia nigra, temporal cortex, 
thalamus, and white matter) among different genotypes 
of SNPs [49]. (4) Gene enrichment analysis was per-
formed in STRING database [50].   

3 RESULTS AND DISCUSSION 

3.1 Sample Statistics 

MCI is heterogeneous. The criteria for distinguishing 

sMCI and pMCI are quite different. Westman et al. [51] 

categorized 256 sMCI and 62 pMCI according to the di-

agnostic information of 12-months’ follow-up. Cho et al. 

[52] used 18-months’ follow-up as the criterion and ob-

tained 131 sMCI and 72 pMCI. Casanova et al. [53] used 

36-months’ follow-up and labeled 182 sMCI and 153 

pMCI. Wolz et al. [54] categorized MCI samples into 

sMCI group if a sample was not progressed to AD as of 

July 2011, and other samples were considered as pMCI. 

In our views, diagnostic information should be consid-

ered at not only a defined time point but also those time 

points before the defined time point. Meanwhile, sam-

ples with diagnosis fluctuate also should not be consid-

ered as sMCI or pMCI arbitrary because clinical diagno-

sis information may be somewhat subjective. Thus in 

our study, 228 labeled MCI samples from the ADNI-1 

cohort were categorized into 115 sMCI and 113 pMCI 

according to their diagnostic information at 36-months’ 

follow-up, while other 136 MCI samples were consid-

ered as unlabeled MCI due to lack of follow-up diag-

nostic information or diagnosis fluctuate. 83 samples 

from the ADNI-2 cohort were grouped to 62 sMCI and 

21 pMCI according to the previous criterion. The base-

line demographic characteristics of all selected MCI 

samples were summarized in Table 1. In the ADNI-1 co-

hort, there was no significant difference in age and ed-

ucation year between the sMCI group and the pMCI 

group (p = 0.65, p = 0.92, respectively). The sMCI group 
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had a significantly higher MMSE score and a signifi-

cantly lower CDR-SB score than the pMCI group (p = 

3.41 × 10-5, p = 2.70 × 10-5). The results indicated that the 

pMCI group showed marked cognitive dysfunctions 

compared to the sMCI group at baseline in the ADNI-1 

cohort. 

TABLE 1. The Demographic Characteristics of Selected 

Samples 

 
# Age, education year, MMSE score, and CDRSB score are presented 
as mean ± standard deviation mode. P-values for differences between 
the sMCI group and the pMCI group are based on the t-test. 

3.2 Selected features for MCI classification 

Feature selection is a necessary mid-step, which 
can reduce computational complexity and improve 
model performance of machine learning. SNP features 
reveal molecular-level information, which is comple-
mentary to the brain tissue level information from sMRI 
data. In recent years, a large number of machine learn-
ing studies based on multimodal features have been ap-
plied in MCI and AD classification and obtained better 
classification performance than single modal method 
[55]–[57]. In our study, QT and SNP features were se-
lected from 103 QT features derived from sMRI data 
and 374 SNP features derived from genotype data, re-
spectively. After feature selection, 32 QT features occur 
at least one time in Lasso, while 10 QT features with a 
frequency greater than 60 were selected for further anal-
ysis, as shown in Table S3 (Appendix C). Due to the 
number of SNP features was about 4 times more than 
QT features, we selected the first 10 top-ranked QT fea-
tures and the first 40 top-ranked SNP features as input 
features in our framework (Table 2).  

TABLE 2. The First 10 Top-Ranked QT and SNP Features 

 
# The full list of the selected SNP features is shown in Table S4 (Ap-
pendix C). 

For QT features, left/right hippocampus, left amyg-
dala, right entorhinal cortex, right isthmus cingulate be-
long to the limbic system. These structures and right 

middle temporal belong to the temporal lobe. Left infe-
rior parietal and right supramarginal belong to the pa-
rietal lobe. Right pars orbitalis and left fusiform are part 
of the frontal lobe and occipital lobe, respectively. The 
selected QT features in our study, especially such as 
hippocampus volume, amygdala volume, and entorhi-
nal thickness, have been reported as specific biomarkers 
for MCI classifications in many previous studies [58].  

Genetic factors such as SNP also can be used in dis-
ease predictions. As far as we know, no study has ap-
plied GWAS-based SNP features for MCI classification. 
The first 40 top-ranked SNP features belong to 39 SNP 
loci. The selected SNP loci were belonged to 35 corre-
sponding genes, as shown in Table S4 (Appendix C). 
Among them, some are putative AD susceptibility 
genes in previous studies, including OR5K3 [59], APOE 
[56], ATXN1 [60], ADAMTS1 [61] and SLC10A2 [62]. 
Some are brain-related or other neurodegeneration dis-
ease-related genes, such as NAPG [63], ATP2B2 [64], 
ZFPM2 [65], RUNX1 [66], CHODL [67] and TLE1 [68], 
being possible candidates for MCI progressive suscep-
tibility. Our selected SNP features may provide an over-
view of potential genetic mechanisms underlying the 
heterogeneity of MCI. 

 To identify the biological significance of the se-
lected SNP loci, we evaluated the effects of all SNP loci 
on genes, transcripts, and protein sequences, as well as 
regulatory regions using Ensemble VEP database. Con-
sistent with most studies that most complex disease 
causal variants are non-coding, only 3.5% the selected 
SNP loci were exonic variants, with the majority were 

intronic variants (39.5%) ， transcript variants of non-
coding RNA genes (18.6%) and intergenic variants 
(16.3%) (Figure 3). 

 

Fig. 3. Percentage of Ensemble Variant Effect Predictor (VEP) conse-

quences of the selected SNP loci. NMD, nonsense-mediated mRNA de-

cay. 

For eQTL analyses, we searched the HaploReg da-
tabase for cis-acting eQTL of the selected SNP loci (Ta-
ble S2). Of these SNP loci, 37 of them have regulatory 
potential when considering all tissues according to 
HaploReg database. A total of 19 SNP loci have eQTL 
information, and four SNP loci are brain-tissue specific 
eQTLs (Table 3). SNP rs429358 is the most significant 
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risk loci of AD and MCI, and is cis-eQTL for APOE ex-
pression in the human brain [69]. Rs17437668, rs677911 
and rs2261950 are eQTLs for CCDC53, MCOKN2 and 
HLA-L, respectively. CCDC53 was related to the dys-
function of retromer. Retromer was reported to play an 
important role in the pathological mechanism of de-
mentia in many researches. Retromer transports amy-
loid precusor protein (APP) to the surface of neurons to 
keep them from decomposing into the toxic beta-amy-
loid protein in the endosomes [70], [71]. MCOLN2 en-
codes a mucolipin protein. TRPML1, a homologous 
gene of MCOLN2, has been found through regulating 
PPARγ/AMPK/Mtor Signalling Pathway involved in 
the progress of AD [72]. HLA-L is a family member of 
human leukocyte antigen (HLA) genes. HLA genes have 
been demonstrated to be involved in the progression 
and pathogenesis of AD [73]. 

TABLE 3. Brain-Tissue Specific eQTL 

 
We searched Braineac database to identify whether 

these three SNP loci affect corresponding gene expres-
sions or not in ten brain tissues. Significant association 
between the genotype of rs17437668, rs677911, and 
CCDC53, MCOLN2 expression level were found (Figure 
4). The T allele and especially TT genotype of 
rs17437668 decreased the CCDC53 expression in the cer-
ebellar cortex (p=0.018). The G allele and especially GG 
genotype of rs677911 decreased the MCOLN2 expres-
sions in the hippocampus (p=0.044), white matter 
(p=0.031), occipital cortex (p=0.004) and temporal cor-
tex (0.016).  Rs261950 is not available in Braineac data-
base. 

 

Fig. 4. (A) Effects of rs17437668 genotype on brain CCDC53 expression 

level. (B) Effects of rs677911 genotype on brain MCOLN2 expression 

level. CRBL, cerebellar cortex; FCTX, frontal cortex; HIPP, hippocampus; 

MEDU, medulla; OCTX, occipital cortex; PUTM, putamen; SNIG, sub-

stantia nigra; TCTX, temporal cortex; THAL, thalamus; WHMT, white 

matter. 

 We also conducted Reactome pathway enrichment 
analyses of our 35 genes using STRING database [50]. 
There were two significant Reactome pathways, includ-
ing ion channel transport (HSA-983712) and transport 
of small molecules (HSA-382551), as shown in Table 4. 
“Ion channel transport” is the sub-pathway of 
“transport of small molecules” in Reactome database. 
Transport of small molecules across the blood-brain 
barrier plays an important role in the drug delivery of 
AD [74]. Besides, Furukawa et al. [75] found that the 
channel proteins on the cell surface are related to AD, 
and the opening or closing of these channel proteins 
may be the key to the onset of the AD. 

TABLE 4. Significant Reactome Pathway (False Discovery 

Rate < 0.05) 

 

3.3 Classification performances 

First, we built two initial SVM classifiers on 228 
original labeled MCI samples from the ADNI-1 cohort 
using 10 selected QT features and 40 selected SNP fea-
tures. 20 unlabeled MCI samples were selected from 136 
unlabeled MCI samples and utilized in each co-training 
iteration. After 21 times iterations, 69 unlabeled MCI 
samples were labeled including 61 pseudo sMCI and 8 
pseudo pMCI samples (Appendix D), and no accordant 
pseudo samples were observed between QT and SNP 
classifiers. Finally, random forest algorithm was used to 
obtain a combined classifier on the 297 labeled MCI 
samples including 228 original labeled samples and 69 
pseudo labeled samples. 83 MCI samples from the 
ADNI-2 cohort including 62 sMCI and 21 pMCI sam-
ples were used as an independent dataset to examine 
the effectiveness of our methods. The performances of 
the single modal QT, the single modal SNP, and the 
combined RF classifiers before and after co-training are 
listed in Table 5. Accuracy (ACC), sensitivity (SEN), 
specificity (SPE), precision (PRE) and area under the 
curve (AUC) were reported in our study. The ROC 
curves the single modal QT, the single modal SNP and 
the combined RF classifiers before and after co-training 
are shown in Figure 5. The AUC of the combined RF 
classifier was improved from 0.767 to 0.825 after co-
training, as shown in Table 5. 
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TABLE 5. Classification Performances of the Classifiers 

Before and After Co-training  

 
ACC: Accuracy; SEN: Sensitivity; SPE: Specificity; PRE: precision; AUC: 

Area Under the Curve; QT: quantitative trait; SNP: Single Nucleotide 

Polymorphism; RF: Random Forest; 

 
Fig. 5. ROC curves for the QT, SNP, and combined RF classifiers before 
(solid curve) and after (dashed curve) co-training.   

As shown in Table 5, co-training greatly improves 
the specificity at the price of the sensitivity of combined 
RF classifier. The sensitivity measures the proportion of 
correctly identified positive samples (pMCI) while the 
specificity measures the proportion of correctly identi-
fied negative samples (sMCI). For the combined RF clas-
sifier before co-training, the potential reason of high 
sensitivity but low specificity is: many of the sMCI sam-
ples are likely to become pMCI and progress to demen-
tia in the near future due to the heterogeneity of MCI 
[76]. For the combined RF classifier after co-training, the 
potential reason for the greatly improved specificity at 
the price of sensitivity is: more pseudo labeled sMCI 
were selected during co-training processes than pMCI 
(Table S6, Appendix D), which made the new labeled 
dataset class imbalanced. In a class imbalanced dataset, 
the majority class (sMCI) will have a higher accuracy in 

prediction and the minority class (pMCI) will have a 
low accuracy [77]. Considering the low sample size of 
pMCI, we also reported precision in our study (Table 5). 
The precision of the combined RF classifier was im-
proved from 47.37% to 72.22% after co-training. 

We evaluated our model on the 83 independent 
samples from the ADNI-2 cohort, 70 samples were clas-
sified correctly but 13 samples were classified incor-
rectly. Two possible reasons, the sample labels or the 
feature data, may lead to the incorrect classifications. 
One possible reason is that the incorrect classified sMCI 
samples may progress to dementia, while the incorrect 
classified pMCI may back to MCI after a short time. 
Thus, we investigated later-than-36-months` diagnoses 
of these incorrect classified samples. The results showed 
that the diagnoses of these samples with later-than-36-
months` diagnosis available were consistent with their 
diagnosis at 36-month`s (Table S7; Appendix E). We 
suspected that the sample labels may not the reason for 
the incorrect classifications in our study. Another possi-
ble reason for the incorrect classifications is that the data 
distribution of the incorrect classified dataset is more 
different from the ADNI-1 cohort than the correct clas-
sified dataset. A dataset larger than the ADNI-2 cohort 
should be considered to confirm our hypotheses in fu-
ture research. 

3.4 Comparison with current models 

In this section, we compared the performances be-
tween our method and previously published studies for 
the prediction of MCI progression (Table 6). We limited 
the performance comparisons to studies that used om-
ics data from ADNI database. The conversion time 
which used to define progressive MCI has a strong in-
fluence on results [56] and is a part of the heterogeneity 
of MCI. Therefore, studies with different conversion 
times were also included in comparisons. 

Previously published studies and our present 
study used different labeling criteria or different modal-
ity data or different evaluation methods, which made 
the performance comparison indirectly when using ac-
curacy metric. Thus, we used AUC, a robust measure-
ment for performance evaluation [78], to compare the 
performances among our model with other studies. By 
comparing with similar studies, it can be seen that the 
performances of our methods are comparable with 
other studies, even in an independent cohort. 
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TABLE 6. Comparison of Performances for sMCI/pMCI Classification 

 

N: Number of samples; Conversion period: length of time over which MCI conversion is defined; MRI: magnetic resonance imaging; ACC: Accu-

racy; SEN: Sensitivity; SPE: Specificity; AUC: Area under the curve;  

Researchers usually used single-source data, such 
as MRI, for classifying sMCI and pMCI at different time 
points of MCI progression. For example, Cho et al. [52] 
and Cuignet et al [79] used 18-months’ follow-up as the 
criterion and MRI data to distinguish sMCI and pMCI 
(accuracy=71.0% and 67.0%). Querbes et al. [18] utilized 
24-months’ follow-up as the criterion and labeled 50 
sMCI and 72 pMCI, and used baseline normalized 
thickness index from MRI to classify sMCI and pMCI 
(accuracy=73.0%). 36-months’ follow-up was a com-
mon-used criterion for sMCI/pMCI classifications in 
many researches. Wee et al. [80] used the correlation be-
tween the average thickness of the cortical regions of in-
terest to conduct SVM classification and obtained sur-
prisingly high accuracy (AUC = 0.84). Beheshti et al. [81] 
developed a novel diagnosis method that use feature-
ranking and a genetic algorithm, and classify MCI using 
baseline MRI data through standard SVM (AUC=0.75). 
Other three studies from Moradi et al [82], Hu et al. [83], 
and Misra et al. [84] achieved AUC of 0.766, 0.79, and 
0.77 from MRI data, respectively. It has been proved 
that features from multimodal data share complemen-
tary information for disease diagnoses. Zhang et al. [85] 
used 24 months` follow-up and multi-modal data to 
predict MCI progression and obtained an AUC of 0.77. 
Westman et al. [57] used a multivariate approach that 
included MRI and PET markers for predicting MCI-to-
AD progression and obtained an AUC of 0.76. Young et 
al. [86] also introduced a novel method using Gaussian 
process classification to classify sMCI and pMCI 
through integrating MRI, PET and APOE genotype 
(AUC=0.73). Hinrichs et al. [87] obtained an AUC of 
0.74 from MRI and PET data, while Davatzikos et al [76] 
obtained an AUC of 0.734 from MRI and CSF bi-
omarkers. 

4 CONCLUSIONS 

In summary, we presented a framework with mul-
timodal data using both labeled and unlabeled samples 
for MCI classification. Our results showed that the com-
bined utilization of sMRI and SNP data through the co-
training method could significantly improve the perfor-
mances of MCI classification in the independent da-
taset, suggesting that brain structure data and genetic 
data represent different aspects, and are complemen-
tary to each other. There are two main directions in fu-
ture work. First, the unlabeled dataset should be much 
larger than the labeled dataset to allow for better im-
provements after co-training. However, the number of 
unlabeled samples was limited in our study and the per-
formance could be improved by using different data 
sources. The other point was low-quality unlabeled 
samples might degrade the classification performances, 
and techniques such as data editing should be used in 
the identification and elimination of these abnormal 
samples. 
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